IEEE Access

Muktidisciplinary : Rapid Review : Open Access Journal

Controlling a Buck Converter with a
Neural Network

Nick Cardamone?, Electrical Engineering Student
University of Ottawa, Canada

ABSTRACT In this work, a buck converter was simulated using MATLAB and Simulink with a neural
network control loop wrapped around it. The simulation was done to show that an intelligent control system
using a neural network is possible. The results showed this is indeed the case using the NARMA L2
controller provided by the MATLAB deep learning toolbox, but with several caveats and short comings.
The most important conclusions gathered were that more effort is required to get the NARMA L2 controller
to a state where ease of design is possible. Where as the current controller version did not allow for
flexibility and customization in the design phase. Second most import consideration is practical
implementation of such a neural network controller. The typical feedforward architecture was not suited to
control a dynamical system where as a modification on a recurrent neural network was shown to be
effective. The last import insight is the possible power consumption of such a controller when implemented
in hardware. For this to be an effective and feasible control strategy, significant effort must be put in to

minimize the electrical power needed to run and compute this application.

INDEX TERMS Neural Network, Feedforward Neural Network, Recurrent Neural Network, Buck
Converter, Switch Mode Power Supply, Microcontroller, ASIC, FPGA

I. INTRODUCTION

In modern electronics, it is often necessary to convert one
DC voltage to another using a power converter. This power
converter is a circuit that either relies on a transistor to act as
a linear regulator or a complex switching topology built from
energy storage elements and transistors among other
components. In this article, a simulation of a DC to DC buck
converter is carried out with an innovative control law.
Instead of using a traditional PI1D control loop, the NARMA
L2 neural network controller was simulated using MATLAB
and Simulink. It is the hope that these neural network
controllers will become suitable candidates to replace PID
controllers in modern switch mode power supplies. The ideal
implementation of such a controller would an ASIC or FPGA
but using a traditional microcontroller would also work.
IIl. Literature Review
In [1] a buck dc to dc converter was simulated using a neural
network controller. The particular controller simulated was
the NARMA L2 controller provided in the MATLAB deep
learning toolbox. The results showed that it was possible to
control a buck converter using an intelligent control law.
However, the simulations in this paper are limited to a single
step response. This limitation does not fully prove that it was
possible to control the output voltage of a buck converter at a
fine enough resolution.
In [2] a buck converter was simulated using a neural network
predictive controller. This control law was then compared
against a traditional PID control loop. The results showed
that the neural network predictive controller was effective
and can produce better results than the PI counter part. That

VOLUME XX, 2017

wasn’t always the case. In some of the presented test cases,
there was considerable ripple on their output voltage and
some strange behavior of the inductor current. It was also
worth mentioning that their model predictive controller was
very computationally expensive to run.

In [3] the authors propose a new approach to controlling a
switch mode power supply. The plant example they chose
was the common buck cell. The method of control being
evaluated was a switch-based clustering algorithm. The
simulated results show a 2.7% possible improvement in
settling time and 0.6% improvement in overshoot as
compared to a more traditional control law.

In [4] a simulation of a dc motor control system was
performed. The particular controller being studied was a
variant of a neural network, named the deep belief network.
The results showed that their particular implementation was
effective. However, their does not appear to be a significant
difference in results between the simulated intelligent
controller and the traditional PID controller.

In [5] the authors present a revised approach to non linear
dynamical system modeling using their improved novel
SINDy algorithm. The advantage of this algorithm was that it
produced a sparse linear state space model that was not
overly computationally expensive to implement in
simulations. They then went on to robustify their algorithm to
improve the results from their test simulations. To conclude
the authors validate their work by performing a simulation of
a reverse pendulum on a cart, where they apply a control law
to stabilize the pendulum based on their SINDy algorithm.

IEEE Access

Nick Cardamone ELG 4157 Winter 2022

Ill. Buck Converters

Looking at a buck converter from a high level, there
are two distinct sub sections. The first switches in the
supply voltage. This is done by applying a PWM signal to
the gate of the MOSFET. The MOSFET then allows current
to flow when the PWM is high and the diode allows the
current to flow when the PWM is off. The second
subsection is an LC low pass filter. This takes the switched
input voltage and smooths it into a lower DC voltage. The
resistor just acts as a load in this case.
For this analysis and simulation, some simplifying
assumptions are made. The first is that the MOSFET acts as
an ideal switch, such that the voltage drop across it is
negligible. The second is the (Schottky) diode is ideal and

Vin

Figure 1: Buck Converter Schematic

The following are the mathematical models used in the
simulations. To derive them, KCL, KVL and Ohm’s Law are
used to create a system of ODEs based on first principles.

11 .
. m: el A_[RC €| p_ [vm
0

. c=1[1 o] D=0

ip 19 1 1

L
X = Ax + B *pwm(t)

y = Cx+ D+ pwm(t)

V. Neural Network Control

In essence, a neural network is a structure that
approximates a function. Where this structure takes an input
state vector and uses a learned, nonlinear mapping to
produce an output state vector. In the context of control, the
neural network takes in a desired state as well as
measurements of the system and produces the optimal
control signal to drive our output to where we want it to be.
VI. Neural Networks

A. Basics

As the name implies, a neural network is a network of
neurons, where a neuron is really a variable stored in
memory. Traditionally, the value a neuron can take ranges
between zero and one. We call the specific numerical value
a neuron takes to be its activation. The network part of the
name comes from how we connect neurons together.

has zero forward voltage. It is also accurate to say this buck
cell is being modeled as an ideal synchronous buck cell,
with the diode replaced with differently clocked MOSFET,
and hence just apply assumption number one. The last
simplification is switching/ circuit losses have been ignored

IV. PID Control Systems

In traditional control systems, one of the most common
controller architectures is the PID controller. In essence, the
PID controller takes a weighted sum of a signal, the integral
of that signal and the derivative of that signal. The following

is the -equation that describes a PID controller
t dx(t
y(t):Kp*x(t)+K]*[x()dt + Kpp * d(t)

The following is a diagram depicting the generation of a
single activation.

Figure 2: Single Neuron Activation Calculation [6]

From the diagram, we can see that the activation of a
single neuron is calculated from a weighted sum of all the
previous neurons activations plus some number to bias the
neuron to usually on or usually off. The w’s in the diagram
are the weights of the network and the b’s are the biases, as
seen through out the literature on neural networks. After
this summing step, the resultant activation is compressed
down by an activation function to be in the interval between
zero and one. Two examples of activation functions are the
sigmoid and the ReLu.

B. Feedforward Neural Network

In order to use neurons in a design, they are connected
together in a network. The most simple form of this
network is called the feedforward neural network, named
this way because the propagation of information only flows
in one direction.

VOLUME XX, 2017

IEEE Access

Nick Cardamone ELG 4157 Winter 2022

Hidden
layer

Input

Output
layer

Inputs
Outputs

Figure 3: Feedforward Neural Network [7]

As seen in the above figure, a neural network is
organized into layers. The first of those layers or the input
layer, as the name suggests, collects the inputs to our
network and converts them to an activation. After the input
layer, there are the hidden layers consisting of regular
neurons connected together. In the above figure, there is
only one hidden layer as that is a simplification for this
explanation. The final layer or output layer is where the
network’s decision takes place. The output layer collects
the activations of the previous layers and is supposed to
produce an output that is correlated to the network’s
decision.

C. Recurrent Neural Network

The feedforward network architecture is great for
static, time independent data, but is sub optimal for
dynamical systems which control is desired. For the
systems of interest, a better class of architectures is the
recurrent neural network. In this architecture, we start with
the base feedforward configuration and feedback neurons to
one another. This feedback gives the network a form of
memory which allows for a better performance with time

varying data or systems.
Recurrent network

output layer
(class/target)

input layer Y
hidden layers: “deep” if > 1

Figure 4: Recurrent Neural Network [8]

D. Network Training

In order to discover or learn what the optimal weights
and biases are, the network must be trained using data
gathered about the system. To do the training, the weights
and biases are initialized randomly at first. Then the
network is fed a training example, or subset of the total data
available to train the network. After the network has
produced a result, a comparison is made between what the
network gave and what it should have been. This

2022

comparison is called a cost function. This cost function is
then used to adjust the weights and biases of the network to
produce a better result for the next training iteration. This
process seeks to minimize the cost function using the
algorithms of gradient decent and backpropagation. As this
iterative training it taking place, the progress is assed with a
separate database of system data to validate the network
performance and to decide when to stop training.

E. Plant Modelling

In order to use a MATLAB neural network controller
in a control system, the network needs to learn a model of
the plant. This was done using a series of step inputs. The
size and duration of the steps were random to maximize the
accuracy of the model. As seen in the figure below, this
training data was generated automatically by Simulink and
fed into the training routine of the controller.

ry

Plant Input
0.8 r‘| | ‘ ‘Jk||. .
0.6 |
| \ i
o U Bl i 1)
0.2(l | i “ ' ‘ ‘
1
o I |
0 1 2 3 5 B 7
time (s)
Plant Qutput
100 . -
50 1 l l|1J I ‘;qu "
AR
I ||\ !
. i alh
-50
0 1 2 3 4 5 6 7
time (8)
The imported data has 15200 samples.
Accept Data | Reject Data |lenm:np(nrmiactnawlnmnrjnue

Figure 5: Autogenerated Network Training Data

VII. NARMA L2 Controller

To simulate a neural network controller, the NARMA
L2 controller, provided in the MATLAB deep learning
toolbox, was used. The internal architecture of the NARMA
L2 controller is a variant of a recurrent neural network. The
basic principle of the NARMA L2 controller is the
controller tries to make a non linear system linear using a
neural network, same kind of thing seen in Koopman
operator theory, but using two separate function
approximations to cancel out the non linearities. With this
linearized model, an optimization is done.
The following is the simulation diagram.

IEEE Access

Nick Cardamone ELG 4157 Winter 2022

Figure 6: Buck Converter with NARMA L2 Controller

When the controller icon is clicked, the following
menu pops up. The specific network parameters were
chosen in an effort to minimize the complexity of the
network while still providing a sufficient level of fidelity
and performance.

4/ Plant |dentificatic

@

File Window Help

Plant Identification - NARMA-L2

Network

Size of Hidden Layer 2 No. Delayed Plant Inputs 3

Sampling Interval (sec) 0.0005 Ne. Delayed Plant Outputs 2

[} Mormalize Training Data

Training Data
Training Samples 100000 (] Limit Output Data
Maximum Plant Input 1 t Inf
Minimum Plant Input 0
Maximum Interval Value (sec) 0.04 Simulink Plant Model: Browse
Minimum Interval Value (sec) 0.01 buckForNarma
Generate Training Data Import Data Export Data
Training P
Traning Epachs 200 Training Function trainlm
Use Current Weights 8 Use Validation Data I8 Use Testing Data
Train Network J oK | Cancel | Apply]

Generate or import data before training the neural network plant. |

Figure 7: NARMA L2 Controller Setup

VIII. Simulation Results

After implementing and simulating the buck converter
using the NARMA L2 block as the controller, the following
results were obtained.

After providing the system with multiple, equally

spaced (in time), step inputs, the following accumulated
step response was observed.

2022

e e R hl S R g B
- |
N | [

ot —

B U Pl N i

Figure 8: Closed Loop Step Responses, System Characterization

Zooming in on one particular step input, the following was
observed.

Bk it NARRIA Gonlisler Stao Rasocrss

S

[—

|
L
— |
|
1

Figure 9: Closed Loop Step Response

Zooming in to the output voltage only, the following step
response is observed.

Figure 10: Output Voltage Step Response

As seen in the above plot, the following parameters are
obtained

Table 1: Voltage Step Response Observations

Natural Frequency 100 Hz
Overshoot Voltage 55V
Steady State Voltage 46 V
Percent Overshoot 20 %
Rise Time 5ms
Settling Time 40 ms

After training the NARMA L2 controller, the following
performance (mean squared error) plot was generated as
follows along with a summary of the training metrics

IEEE Access

Nick Cardamone ELG 4157 Winter 2022

[Meural Netwo Training Performance (plotperform), Epoch 99, Training — [m]
File Edit View Insert Tools Desktop Window Help

Best Validation Performance is 0.015628 at epoch 93

0% f

Train
Validation
Test

a‘-;. Best

]

E 10°

—_

-

o

E

w

=

§

5 10

o

w

c

]

@

= P

107 st

0 10 20 30 40 50 60 70 80 90
99 Epochs
Figure 11: Network Training Performance

Network Diagram

Training Results

Training finished: Met validation criterion &

Training Progress

. Unit Initial Value Stopped Value | Target Value
|Epoch ' 0 ' 99 | 200
[Elapsed Time | : | ooo002 | ;
|Peformance | 818 | 000943 | 0

| Gradient [790 | 0473 | 1e10
[Mu [0001 | 105 | 1e+10
Validation Checks 0 [6 | 6
Training Algorithms

Data Division: Index divideind

Training: Levenberg-Marquardt trainim
Performance: Mean Squared Error mse
Calculations: MATLAB

Training Plots
Performance Training State

Regression

Figure 12: Network Training Summary

2022

IX. Discussion

F. Instability and Network Tuning

As seen in the initial simulation results, the neural
network produced an unstable system. After doing several
iterations of the simulation, two root causes were
discovered. The first is that the sampling rate of the
controller must be slower than the natural frequency of the
open loop oscillations. When this is not the case, the neural
network controllers built into deep learning toolbox
(MATLAB) are unable to work correctly. The second root
cause has to do with bugs with in the neural network
controller its self. The most significant bug has to do with
the training routine producing an erroneous plant model.

Plant Output
5 : :

=200

-400 '

-600

-800
-1000

0 0.02 0.04

Figure 13: Erroneous Plant Output from Network Training

As seen in the figure above, the learned plant
model of a buck converter produces a negative output from
a positive supply voltage. When the training data was
reloaded, this issue went away.

Figure 14: Initial (Unstable) Closed Loop Step Response

IEEE Access

Nick Cardamone ELG 4157 Winter 2022

G. Error Detection and Correction

As is common knowledge with in the machine learning
community, neural networks are not 100% accurate all the
time. With in the field of machine learning controls, this
can pose a problem in some circumstances. For example,
the results of the simulations done in this work show an
overshoot of 7 V. In cases where the output voltage of a
switch mode power supply are critical, this overshoot might
damage the components placed after the SMPS. To
compensate for this, extra care must be taken to
characterize these in accuracies, predict when they will
occur and compensate for them.

Figure 15: Step Response Error Voltage

H. Sustainability and Power Consumption

As the world moves to a more sustainable future, it is worth
considering the power consumption of a neural network
implementation in a microcontroller. When comparing a neural
network to a more traditional controller, the machine instructions
required for the neural network typically exceed the number
needed for an older control strategy. This is due to the repeated
multiplication and addition needed when traversing the neurons
with in the network. For the neural network to be selected as an
optimal control strategy, the operating power must be less than or
equal to the power required to implement a traditional controller,
such as a PID loop. Alternatively, specialized hardware could be
designed, such as an ASIC, to deploy the neural network on to
increase the power efficiency.

I. Loop Shaping

Within the controllers provided in the MATLAB deep
learning toolbox, there are no parameters to tune to get the
desired transient response. Instead, the controller assumes
the desired rise time is infinite/ the maximum possible but
limited by the sample rate of the simulation. When
designing control systems, this is rarely the case, as a fast
rise time usually leads to more overshoot (when the system
is linear). In some cases, the desired rise time is on the
order of milliseconds to seconds depending on the
application.

In this simulation with the NARMA L2 controller, this
was achieved by adding a prefilter to the reference input.
The goal of the prefilter was to reduce rise time of the
reference signal, thus slowing the system output and
achieving that slower rise time with a reduced overshoot. In
practice however, this prefilter defeats the purpose of the
neural network controller, which is to have a single
controller to produce the desired system properties. To

2022

achieve this only using a neural network, a cost function
must be defined that penalizes the appropriate parameters
when the network is being trained. This custom cost
function does not appear to be part of the GUI for the
neural network controller that comes with the deep learning
toolbox. To have this option implemented in a GUI would
be a valuable product improvement.
X. Conclusion

The neural network controller approach to a buck
system is viable and feasible, as demonstrated in this work.

However, there are still several hurdles to overcome before
widespread implementation. The more important hurdles
are reliability and accuracy, ease of design and controller
power consumption when implemented in hardware,
whether that be in a microcontroller, FPGA or ASIC. The
main findings were that the NARMA L2 controller can be
used in a simulation to control the output voltage of a buck
converter, but a costly prefilter had to be added to get
desirable system properties. This prefilter is undesirable in
a practical implementation but the overall architecture of
the NARMA L2 controller is still promising. More effort is
required to allow further customization of the controller to
allow for custom cost functions and error detection and
correction to take place.

XI. References

[1] G. Vacheva, N. Hinov, H. Kanchev, and B. Gilev,
“Application of neural network for smart control of a buck
DC/DC converter,” 2019 42nd International Spring
Seminar on Electronics Technology (ISSE), 2019.

[2] S. Saadatmand, P. Shamsi, and M. Ferdowsi, “The
voltage regulation of a buck converter using a neural
network predictive controller,” 2020 IEEE Texas Power
and Energy Conference (TPEC), 2020.

[3] B. W. Abegaz and M. Cmiel, “Smart control of Buck
converters using a switching-based clustering algorithm,”
2019 14th Annual Conference System of Systems
Engineering (SoSE), 2019.

[4] K. Cheon, J. Kim, M. Hamadache, and D. Lee, “On
replacing PID controller with Deep Learning Controller for
DC motor system,” Journal of Automation and Control
Engineering, vol. 3, no. 6, pp. 452-456, 2015.

[5] K. Kaheman, J. N. Kutz, and S. L. Brunton, “Sindy-pi:
A robust algorithm for parallel implicit sparse identification
of nonlinear dynamics,” Proceedings of the Royal Society
A: Mathematical, Physical and Engineering Sciences, vol.
476, no. 2242, p. 20200279, 2020.

IEEE Access

Nick Cardamone ELG 4157 Winter 2022

[6] “Application of intelligent switching ... -
researchgate.net,” Structure-and-mathematical-modeling-
of-the-node-in-neural-network.png. [Online]. Available:
https://www.researchgate.net/profile/Kyoung-Kwan-
Ahn/publication/242586404_APPLICATION_OF_INTEL
LIGENT_SWITCHING_CONTROL_OF_PNEUMATIC_
ARTIFICIAL_MUSCLE_MANIPULATORS_WITH_MA
GNETO-
RHEOLOGICAL_BRAKE/links/5414fcbhf0cf2fa878ad3ed9
8/APPLICATION-OF-INTELLIGENT-SWITCHING-
CONTROL-OF-PNEUMATIC-ARTIFICIAL-MUSCLE-
MANIPULATORS-WITH-MAGNETO-RHEOLOGICAL-
BRAKE.pdf?_sg%5B0%5D=started_experiment_milestone
&origin=journalDetail. [Accessed: 13-Apr-2022].

[7] “2nd place solution in google AT open images object
detection track 2019,” DeepAl, 17-Nov-2019. [Online].
Available: https://deepai.org/publication/2nd-place-
solution-in-google-ai-open-images-object-detection-track-
2019. [Accessed: 12-Apr-2022].

[8]5. “Comprehensive and comparative analysis of
neural network,” Recurrent-neural-networkRNN-or-Long-
Short-Term-MemoryLSTM-5616.png. [Online]. Available:
https://www.researchgate.net/profile/Vidushi-
Mishra/publication/324883736_COMPREHENSIVE_AND
_COMPARATIVE_ANALYSIS_OF _NEURAL_NETWO
RK/links/5eff046e458515505087a3e7/COMPREHENSIVE
-AND-COMPARATIVE-ANALYSIS-OF-NEURAL-
NETWORK.pdf. [Accessed: 13-Apr-2022].

2022

