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ABSTRACT In this work, a buck converter was simulated using MATLAB and Simulink with a neural 

network control loop wrapped around it. The simulation was done to show that an intelligent control system 

using a neural network is possible. The results showed this is indeed the case using the NARMA L2 

controller provided by the MATLAB deep learning toolbox, but with several caveats and short comings. 

The most important conclusions gathered were that more effort is required to get the NARMA L2 controller 

to a state where ease of design is possible. Where as the current controller version did not allow for 

flexibility and customization in the design phase. Second most import consideration is practical 

implementation of such a neural network controller. The typical feedforward architecture was not suited to 

control a dynamical system where as a modification on a recurrent neural network was shown to be 

effective. The last import insight is the possible power consumption of such a controller when implemented 

in hardware. For this to be an effective and feasible control strategy, significant effort must be put in to 

minimize the electrical power needed to run and compute this application. 

INDEX TERMS Neural Network, Feedforward Neural Network, Recurrent Neural Network, Buck 

Converter, Switch Mode Power Supply, Microcontroller, ASIC, FPGA 

I. INTRODUCTION 

In modern electronics, it is often necessary to convert one 

DC voltage to another using a power converter. This power 

converter is a circuit that either relies on a transistor to act as 

a linear regulator or a complex switching topology built from 

energy storage elements and transistors among other 

components. In this article, a simulation of a DC to DC buck 

converter is carried out with an innovative control law. 

Instead of using a traditional PID control loop, the NARMA 

L2 neural network controller was simulated using MATLAB 

and Simulink. It is the hope that these neural network 

controllers will become suitable candidates to replace PID 

controllers in modern switch mode power supplies. The ideal 

implementation of such a controller would an ASIC or FPGA 

but using a traditional microcontroller would also work. 
II. Literature Review  

In [1] a buck dc to dc converter was simulated using a neural 

network controller. The particular controller simulated was 

the NARMA L2 controller provided in the MATLAB deep 

learning toolbox. The results showed that it was possible to 

control a buck converter using an intelligent control law. 

However, the simulations in this paper are limited to a single 

step response. This limitation does not fully prove that it was 

possible to control the output voltage of a buck converter at a 

fine enough resolution. 

In [2] a buck converter was simulated using a neural network 

predictive controller. This control law was then compared 

against a traditional PID control loop. The results showed 

that the neural network predictive controller was effective 

and can produce better results than the PI counter part. That 

wasn’t always the case. In some of the presented test cases, 

there was considerable ripple on their output voltage and 

some strange behavior of the inductor current. It was also 

worth mentioning that their model predictive controller was 

very computationally expensive to run. 

In [3] the authors propose a new approach to controlling a 

switch mode power supply. The plant example they chose 

was the common buck cell. The method of control being 

evaluated was a switch-based clustering algorithm. The 

simulated results show a 2.7% possible improvement in 

settling time and 0.6% improvement in overshoot as 

compared to a more traditional control law.  

In [4] a simulation of a dc motor control system was 

performed. The particular controller being studied was a 

variant of a neural network, named the deep belief network. 

The results showed that their particular implementation was 

effective. However, their does not appear to be a significant 

difference in results between the simulated intelligent 

controller and the traditional PID controller. 

In [5] the authors present a revised approach to non linear 

dynamical system modeling using their improved novel 

SINDy algorithm. The advantage of this algorithm was that it 

produced a sparse linear state space model that was not 

overly computationally expensive to implement in 

simulations. They then went on to robustify their algorithm to 

improve the results from their test simulations. To conclude 

the authors validate their work by performing a simulation of 

a reverse pendulum on a cart, where they apply a control law 

to stabilize the pendulum based on their SINDy algorithm. 
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III. Buck Converters 

Looking at a buck converter from a high level, there 

are two distinct sub sections. The first switches in the 

supply voltage. This is done by applying a PWM signal to 

the gate of the MOSFET. The MOSFET then allows current 

to flow when the PWM is high and the diode allows the 

current to flow when the PWM is off. The second 

subsection is an LC low pass filter. This takes the switched 

input voltage and smooths it into a lower DC voltage. The 

resistor just acts as a load in this case.  

For this analysis and simulation, some simplifying 

assumptions are made. The first is that the MOSFET acts as 

an ideal switch, such that the voltage drop across it is 

negligible. The second is the (Schottky) diode is ideal and 

has zero forward voltage. It is also accurate to say this buck 

cell is being modeled as an ideal synchronous buck cell, 

with the diode replaced with differently clocked MOSFET, 

and hence just apply assumption number one. The last 

simplification is switching/ circuit losses have been ignored 

IV. PID Control Systems 

 

In traditional control systems, one of the most common 

controller architectures is the PID controller. In essence, the 

PID controller takes a weighted sum of a signal, the integral 

of that signal and the derivative of that signal. The following 

is the equation that describes a PID controller

 

 

The following are the mathematical models used in the 

simulations. To derive them, KCL, KVL and Ohm’s Law are 

used to create a system of ODEs based on first principles. 

 

V. Neural Network Control 

In essence, a neural network is a structure that 

approximates a function. Where this structure takes an input 

state vector and uses a learned, nonlinear mapping to 

produce an output state vector. In the context of control, the 

neural network takes in a desired state as well as 

measurements of the system and produces the optimal 

control signal to drive our output to where we want it to be. 
VI. Neural Networks 

A. Basics 

As the name implies, a neural network is a network of 

neurons, where a neuron is really a variable stored in 

memory. Traditionally, the value a neuron can take ranges 

between zero and one. We call the specific numerical value 

a neuron takes to be its activation. The network part of the 

name comes from how we connect neurons together. The 

The following is a diagram depicting the generation of a 

single activation. 

 
Figure 2: Single Neuron Activation Calculation [6] 

From the diagram, we can see that the activation of a 

single neuron is calculated from a weighted sum of all the 

previous neurons activations plus some number to bias the 

neuron to usually on or usually off. The w’s in the diagram 

are the weights of the network and the b’s are the biases, as 

seen through out the literature on neural networks. After 

this summing step, the resultant activation is compressed 

down by an activation function to be in the interval between 

zero and one. Two examples of activation functions are the 

sigmoid and the ReLu. 

B. Feedforward Neural Network 

In order to use neurons in a design, they are connected 

together in a network. The most simple form of this 

network is called the feedforward neural network, named 

this way because the propagation of information only flows 

in one direction. 

Figure 1: Buck Converter Schematic 
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Figure 3: Feedforward Neural Network [7] 

As seen in the above figure, a neural network is 

organized into layers. The first of those layers or the input 

layer, as the name suggests, collects the inputs to our 

network and converts them to an activation. After the input 

layer, there are the hidden layers consisting of regular 

neurons connected together. In the above figure, there is 

only one hidden layer as that is a simplification for this 

explanation. The final layer or output layer is where the 

network’s decision takes place. The output layer collects 

the activations of the previous layers and is supposed to 

produce an output that is correlated to the network’s 

decision. 

C. Recurrent Neural Network 

The feedforward network architecture is great for 

static, time independent data, but is sub optimal for 

dynamical systems which control is desired. For the 

systems of interest, a better class of architectures is the 

recurrent neural network. In this architecture, we start with 

the base feedforward configuration and feedback neurons to 

one another. This feedback gives the network a form of 

memory which allows for a better performance with time 

varying data or systems. 

 
Figure 4: Recurrent Neural Network [8] 

D. Network Training 

In order to discover or learn what the optimal weights 

and biases are, the network must be trained using data 

gathered about the system. To do the training, the weights 

and biases are initialized randomly at first. Then the 

network is fed a training example, or subset of the total data 

available to train the network. After the network has 

produced a result, a comparison is made between what the 

network gave and what it should have been. This 

comparison is called a cost function. This cost function is 

then used to adjust the weights and biases of the network to 

produce a better result for the next training iteration. This 

process seeks to minimize the cost function using the 

algorithms of gradient decent and backpropagation. As this 

iterative training it taking place, the progress is assed with a 

separate database of system data to validate the network 

performance and to decide when to stop training. 

E. Plant Modelling  

In order to use a MATLAB neural network controller 

in a control system, the network needs to learn a model of 

the plant. This was done using a series of step inputs. The 

size and duration of the steps were random to maximize the 

accuracy of the model. As seen in the figure below, this 

training data was generated automatically by Simulink and 

fed into the training routine of the controller. 

 
Figure 5: Autogenerated Network Training Data 

VII. NARMA L2 Controller 

To simulate a neural network controller, the NARMA 

L2 controller, provided in the MATLAB deep learning 

toolbox, was used. The internal architecture of the NARMA 

L2 controller is a variant of a recurrent neural network. The 

basic principle of the NARMA L2 controller is the 

controller tries to make a non linear system linear using a 

neural network, same kind of thing seen in Koopman 

operator theory, but using two separate function 

approximations to cancel out the non linearities. With this 

linearized model, an optimization is done.  

The following is the simulation diagram. 
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Figure 6: Buck Converter with NARMA L2 Controller 

When the controller icon is clicked, the following 

menu pops up. The specific network parameters were 

chosen in an effort to minimize the complexity of the 

network while still providing a sufficient level of fidelity 

and performance. 

 
Figure 7: NARMA L2 Controller Setup 

VIII. Simulation Results 

After implementing and simulating the buck converter 

using the NARMA L2 block as the controller, the following 

results were obtained. 

 

After providing the system with multiple, equally 

spaced (in time), step inputs, the following accumulated 

step response was observed. 

 
Figure 8: Closed Loop Step Responses, System Characterization 

Zooming in on one particular step input, the following was 

observed. 

 
Figure 9: Closed Loop Step Response 

Zooming in to the output voltage only, the following step 

response is observed. 

 
Figure 10: Output Voltage Step Response 

As seen in the above plot, the following parameters are 

obtained 

 
Table 1: Voltage Step Response Observations 

Natural Frequency 100 Hz 

Overshoot Voltage 55 V 

Steady State Voltage 46 V 

Percent Overshoot 20 % 

Rise Time 5 ms 

Settling Time 40 ms 

 
After training the NARMA L2 controller, the following 

performance (mean squared error) plot was generated as 

follows along with a summary of the training metrics 
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Figure 11: Network Training Performance 

 
Figure 12: Network Training Summary 

 

IX. Discussion 

F. Instability and Network Tuning 

 
  As seen in the initial simulation results, the neural 

network produced an unstable system. After doing several 

iterations of the simulation, two root causes were 

discovered. The first is that the sampling rate of the 

controller must be slower than the natural frequency of the 

open loop oscillations. When this is not the case, the neural 

network controllers built into deep learning toolbox 

(MATLAB) are unable to work correctly. The second root 

cause has to do with bugs with in the neural network 

controller its self. The most significant bug has to do with 

the training routine producing an erroneous plant model. 

 

 
Figure 13: Erroneous Plant Output from Network Training 

As seen in the figure above, the learned plant 

model of a buck converter produces a negative output from 

a positive supply voltage. When the training data was 

reloaded, this issue went away. 

 
Figure 14: Initial (Unstable) Closed Loop Step Response 
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G. Error Detection and Correction 

As is common knowledge with in the machine learning 

community, neural networks are not 100% accurate all the 

time. With in the field of machine learning controls, this 

can pose a problem in some circumstances. For example, 

the results of the simulations done in this work show an 

overshoot of 7 V. In cases where the output voltage of a 

switch mode power supply are critical, this overshoot might 

damage the components placed after the SMPS. To 

compensate for this, extra care must be taken to 

characterize these in accuracies, predict when they will 

occur and compensate for them. 

 

 
Figure 15: Step Response Error Voltage 

H. Sustainability and Power Consumption 
As the world moves to a more sustainable future, it is worth 

considering the power consumption of a neural network 

implementation in a microcontroller. When comparing a neural 

network to a more traditional controller, the machine instructions 

required for the neural network typically exceed the number 

needed for an older control strategy. This is due to the repeated 

multiplication and addition needed when traversing the neurons 

with in the network. For the neural network to be selected as an 

optimal control strategy, the operating power must be less than or 

equal to the power required to implement a traditional controller, 

such as a PID loop. Alternatively, specialized hardware could be 

designed, such as an ASIC, to deploy the neural network on to 

increase the power efficiency. 

I. Loop Shaping 

Within the controllers provided in the MATLAB deep 

learning toolbox, there are no parameters to tune to get the 

desired transient response. Instead, the controller assumes 

the desired rise time is infinite/ the maximum possible but 

limited by the sample rate of the simulation. When 

designing control systems, this is rarely the case, as a fast 

rise time usually leads to more overshoot (when the system 

is linear). In some cases, the desired rise time is on the 

order of milliseconds to seconds depending on the 

application. 

In this simulation with the NARMA L2 controller, this 

was achieved by adding a prefilter to the reference input. 

The goal of the prefilter was to reduce rise time of the 

reference signal, thus slowing the system output and 

achieving that slower rise time with a reduced overshoot. In 

practice however, this prefilter defeats the purpose of the 

neural network controller, which is to have a single 

controller to produce the desired system properties. To 

achieve this only using a neural network, a cost function 

must be defined that penalizes the appropriate parameters 

when the network is being trained. This custom cost 

function does not appear to be part of the GUI for the 

neural network controller that comes with the deep learning 

toolbox. To have this option implemented in a GUI would 

be a valuable product improvement.  
X. Conclusion 

The neural network controller approach to a buck 

system is viable and feasible, as demonstrated in this work. 

However, there are still several hurdles to overcome before 

widespread implementation. The more important hurdles 

are reliability and accuracy, ease of design and controller 

power consumption when implemented in hardware, 

whether that be in a microcontroller, FPGA or ASIC. The 

main findings were that the NARMA L2 controller can be 

used in a simulation to control the output voltage of a buck 

converter, but a costly prefilter had to be added to get 

desirable system properties. This prefilter is undesirable in 

a practical implementation but the overall architecture of 

the NARMA L2 controller is still promising. More effort is 

required to allow further customization of the controller to 

allow for custom cost functions and error detection and 

correction to take place. 
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