

VOLUME XX, 2017 1

Controlling a Buck Converter with a
Neural Network
Nick Cardamone1, Electrical Engineering Student
1University of Ottawa, Canada

ABSTRACT In this work, a buck converter was simulated using MATLAB and Simulink with a neural

network control loop wrapped around it. The simulation was done to show that an intelligent control system

using a neural network is possible. The results showed this is indeed the case using the NARMA L2

controller provided by the MATLAB deep learning toolbox, but with several caveats and short comings.

The most important conclusions gathered were that more effort is required to get the NARMA L2 controller

to a state where ease of design is possible. Where as the current controller version did not allow for

flexibility and customization in the design phase. Second most import consideration is practical

implementation of such a neural network controller. The typical feedforward architecture was not suited to

control a dynamical system where as a modification on a recurrent neural network was shown to be

effective. The last import insight is the possible power consumption of such a controller when implemented

in hardware. For this to be an effective and feasible control strategy, significant effort must be put in to

minimize the electrical power needed to run and compute this application.

INDEX TERMS Neural Network, Feedforward Neural Network, Recurrent Neural Network, Buck

Converter, Switch Mode Power Supply, Microcontroller, ASIC, FPGA

I. INTRODUCTION

In modern electronics, it is often necessary to convert one

DC voltage to another using a power converter. This power

converter is a circuit that either relies on a transistor to act as

a linear regulator or a complex switching topology built from

energy storage elements and transistors among other

components. In this article, a simulation of a DC to DC buck

converter is carried out with an innovative control law.

Instead of using a traditional PID control loop, the NARMA

L2 neural network controller was simulated using MATLAB

and Simulink. It is the hope that these neural network

controllers will become suitable candidates to replace PID

controllers in modern switch mode power supplies. The ideal

implementation of such a controller would an ASIC or FPGA

but using a traditional microcontroller would also work.
II. Literature Review

In [1] a buck dc to dc converter was simulated using a neural

network controller. The particular controller simulated was

the NARMA L2 controller provided in the MATLAB deep

learning toolbox. The results showed that it was possible to

control a buck converter using an intelligent control law.

However, the simulations in this paper are limited to a single

step response. This limitation does not fully prove that it was

possible to control the output voltage of a buck converter at a

fine enough resolution.

In [2] a buck converter was simulated using a neural network

predictive controller. This control law was then compared

against a traditional PID control loop. The results showed

that the neural network predictive controller was effective

and can produce better results than the PI counter part. That

wasn’t always the case. In some of the presented test cases,

there was considerable ripple on their output voltage and

some strange behavior of the inductor current. It was also

worth mentioning that their model predictive controller was

very computationally expensive to run.

In [3] the authors propose a new approach to controlling a

switch mode power supply. The plant example they chose

was the common buck cell. The method of control being

evaluated was a switch-based clustering algorithm. The

simulated results show a 2.7% possible improvement in

settling time and 0.6% improvement in overshoot as

compared to a more traditional control law.

In [4] a simulation of a dc motor control system was

performed. The particular controller being studied was a

variant of a neural network, named the deep belief network.

The results showed that their particular implementation was

effective. However, their does not appear to be a significant

difference in results between the simulated intelligent

controller and the traditional PID controller.

In [5] the authors present a revised approach to non linear

dynamical system modeling using their improved novel

SINDy algorithm. The advantage of this algorithm was that it

produced a sparse linear state space model that was not

overly computationally expensive to implement in

simulations. They then went on to robustify their algorithm to

improve the results from their test simulations. To conclude

the authors validate their work by performing a simulation of

a reverse pendulum on a cart, where they apply a control law

to stabilize the pendulum based on their SINDy algorithm.

 Nick Cardamone ELG 4157 Winter 2022

2 VOLUME XX, 2017

III. Buck Converters

Looking at a buck converter from a high level, there

are two distinct sub sections. The first switches in the

supply voltage. This is done by applying a PWM signal to

the gate of the MOSFET. The MOSFET then allows current

to flow when the PWM is high and the diode allows the

current to flow when the PWM is off. The second

subsection is an LC low pass filter. This takes the switched

input voltage and smooths it into a lower DC voltage. The

resistor just acts as a load in this case.

For this analysis and simulation, some simplifying

assumptions are made. The first is that the MOSFET acts as

an ideal switch, such that the voltage drop across it is

negligible. The second is the (Schottky) diode is ideal and

has zero forward voltage. It is also accurate to say this buck

cell is being modeled as an ideal synchronous buck cell,

with the diode replaced with differently clocked MOSFET,

and hence just apply assumption number one. The last

simplification is switching/ circuit losses have been ignored

IV. PID Control Systems

In traditional control systems, one of the most common

controller architectures is the PID controller. In essence, the

PID controller takes a weighted sum of a signal, the integral

of that signal and the derivative of that signal. The following

is the equation that describes a PID controller

The following are the mathematical models used in the

simulations. To derive them, KCL, KVL and Ohm’s Law are

used to create a system of ODEs based on first principles.

V. Neural Network Control

In essence, a neural network is a structure that

approximates a function. Where this structure takes an input

state vector and uses a learned, nonlinear mapping to

produce an output state vector. In the context of control, the

neural network takes in a desired state as well as

measurements of the system and produces the optimal

control signal to drive our output to where we want it to be.
VI. Neural Networks

A. Basics

As the name implies, a neural network is a network of

neurons, where a neuron is really a variable stored in

memory. Traditionally, the value a neuron can take ranges

between zero and one. We call the specific numerical value

a neuron takes to be its activation. The network part of the

name comes from how we connect neurons together. The

The following is a diagram depicting the generation of a

single activation.

Figure 2: Single Neuron Activation Calculation [6]

From the diagram, we can see that the activation of a

single neuron is calculated from a weighted sum of all the

previous neurons activations plus some number to bias the

neuron to usually on or usually off. The w’s in the diagram

are the weights of the network and the b’s are the biases, as

seen through out the literature on neural networks. After

this summing step, the resultant activation is compressed

down by an activation function to be in the interval between

zero and one. Two examples of activation functions are the

sigmoid and the ReLu.

B. Feedforward Neural Network

In order to use neurons in a design, they are connected

together in a network. The most simple form of this

network is called the feedforward neural network, named

this way because the propagation of information only flows

in one direction.

Figure 1: Buck Converter Schematic

 Nick Cardamone ELG 4157 Winter 2022

2022 3

Figure 3: Feedforward Neural Network [7]

As seen in the above figure, a neural network is

organized into layers. The first of those layers or the input

layer, as the name suggests, collects the inputs to our

network and converts them to an activation. After the input

layer, there are the hidden layers consisting of regular

neurons connected together. In the above figure, there is

only one hidden layer as that is a simplification for this

explanation. The final layer or output layer is where the

network’s decision takes place. The output layer collects

the activations of the previous layers and is supposed to

produce an output that is correlated to the network’s

decision.

C. Recurrent Neural Network

The feedforward network architecture is great for

static, time independent data, but is sub optimal for

dynamical systems which control is desired. For the

systems of interest, a better class of architectures is the

recurrent neural network. In this architecture, we start with

the base feedforward configuration and feedback neurons to

one another. This feedback gives the network a form of

memory which allows for a better performance with time

varying data or systems.

Figure 4: Recurrent Neural Network [8]

D. Network Training

In order to discover or learn what the optimal weights

and biases are, the network must be trained using data

gathered about the system. To do the training, the weights

and biases are initialized randomly at first. Then the

network is fed a training example, or subset of the total data

available to train the network. After the network has

produced a result, a comparison is made between what the

network gave and what it should have been. This

comparison is called a cost function. This cost function is

then used to adjust the weights and biases of the network to

produce a better result for the next training iteration. This

process seeks to minimize the cost function using the

algorithms of gradient decent and backpropagation. As this

iterative training it taking place, the progress is assed with a

separate database of system data to validate the network

performance and to decide when to stop training.

E. Plant Modelling

In order to use a MATLAB neural network controller

in a control system, the network needs to learn a model of

the plant. This was done using a series of step inputs. The

size and duration of the steps were random to maximize the

accuracy of the model. As seen in the figure below, this

training data was generated automatically by Simulink and

fed into the training routine of the controller.

Figure 5: Autogenerated Network Training Data

VII. NARMA L2 Controller

To simulate a neural network controller, the NARMA

L2 controller, provided in the MATLAB deep learning

toolbox, was used. The internal architecture of the NARMA

L2 controller is a variant of a recurrent neural network. The

basic principle of the NARMA L2 controller is the

controller tries to make a non linear system linear using a

neural network, same kind of thing seen in Koopman

operator theory, but using two separate function

approximations to cancel out the non linearities. With this

linearized model, an optimization is done.

The following is the simulation diagram.

 Nick Cardamone ELG 4157 Winter 2022

2022 3

Figure 6: Buck Converter with NARMA L2 Controller

When the controller icon is clicked, the following

menu pops up. The specific network parameters were

chosen in an effort to minimize the complexity of the

network while still providing a sufficient level of fidelity

and performance.

Figure 7: NARMA L2 Controller Setup

VIII. Simulation Results

After implementing and simulating the buck converter

using the NARMA L2 block as the controller, the following

results were obtained.

After providing the system with multiple, equally

spaced (in time), step inputs, the following accumulated

step response was observed.

Figure 8: Closed Loop Step Responses, System Characterization

Zooming in on one particular step input, the following was

observed.

Figure 9: Closed Loop Step Response

Zooming in to the output voltage only, the following step

response is observed.

Figure 10: Output Voltage Step Response

As seen in the above plot, the following parameters are

obtained

Table 1: Voltage Step Response Observations

Natural Frequency 100 Hz

Overshoot Voltage 55 V

Steady State Voltage 46 V

Percent Overshoot 20 %

Rise Time 5 ms

Settling Time 40 ms

After training the NARMA L2 controller, the following

performance (mean squared error) plot was generated as

follows along with a summary of the training metrics

 Nick Cardamone ELG 4157 Winter 2022

2022 3

Figure 11: Network Training Performance

Figure 12: Network Training Summary

IX. Discussion

F. Instability and Network Tuning

 As seen in the initial simulation results, the neural

network produced an unstable system. After doing several

iterations of the simulation, two root causes were

discovered. The first is that the sampling rate of the

controller must be slower than the natural frequency of the

open loop oscillations. When this is not the case, the neural

network controllers built into deep learning toolbox

(MATLAB) are unable to work correctly. The second root

cause has to do with bugs with in the neural network

controller its self. The most significant bug has to do with

the training routine producing an erroneous plant model.

Figure 13: Erroneous Plant Output from Network Training

As seen in the figure above, the learned plant

model of a buck converter produces a negative output from

a positive supply voltage. When the training data was

reloaded, this issue went away.

Figure 14: Initial (Unstable) Closed Loop Step Response

 Nick Cardamone ELG 4157 Winter 2022

2022 3

G. Error Detection and Correction

As is common knowledge with in the machine learning

community, neural networks are not 100% accurate all the

time. With in the field of machine learning controls, this

can pose a problem in some circumstances. For example,

the results of the simulations done in this work show an

overshoot of 7 V. In cases where the output voltage of a

switch mode power supply are critical, this overshoot might

damage the components placed after the SMPS. To

compensate for this, extra care must be taken to

characterize these in accuracies, predict when they will

occur and compensate for them.

Figure 15: Step Response Error Voltage

H. Sustainability and Power Consumption
As the world moves to a more sustainable future, it is worth

considering the power consumption of a neural network

implementation in a microcontroller. When comparing a neural

network to a more traditional controller, the machine instructions

required for the neural network typically exceed the number

needed for an older control strategy. This is due to the repeated

multiplication and addition needed when traversing the neurons

with in the network. For the neural network to be selected as an

optimal control strategy, the operating power must be less than or

equal to the power required to implement a traditional controller,

such as a PID loop. Alternatively, specialized hardware could be

designed, such as an ASIC, to deploy the neural network on to

increase the power efficiency.

I. Loop Shaping

Within the controllers provided in the MATLAB deep

learning toolbox, there are no parameters to tune to get the

desired transient response. Instead, the controller assumes

the desired rise time is infinite/ the maximum possible but

limited by the sample rate of the simulation. When

designing control systems, this is rarely the case, as a fast

rise time usually leads to more overshoot (when the system

is linear). In some cases, the desired rise time is on the

order of milliseconds to seconds depending on the

application.

In this simulation with the NARMA L2 controller, this

was achieved by adding a prefilter to the reference input.

The goal of the prefilter was to reduce rise time of the

reference signal, thus slowing the system output and

achieving that slower rise time with a reduced overshoot. In

practice however, this prefilter defeats the purpose of the

neural network controller, which is to have a single

controller to produce the desired system properties. To

achieve this only using a neural network, a cost function

must be defined that penalizes the appropriate parameters

when the network is being trained. This custom cost

function does not appear to be part of the GUI for the

neural network controller that comes with the deep learning

toolbox. To have this option implemented in a GUI would

be a valuable product improvement.
X. Conclusion

The neural network controller approach to a buck

system is viable and feasible, as demonstrated in this work.

However, there are still several hurdles to overcome before

widespread implementation. The more important hurdles

are reliability and accuracy, ease of design and controller

power consumption when implemented in hardware,

whether that be in a microcontroller, FPGA or ASIC. The

main findings were that the NARMA L2 controller can be

used in a simulation to control the output voltage of a buck

converter, but a costly prefilter had to be added to get

desirable system properties. This prefilter is undesirable in

a practical implementation but the overall architecture of

the NARMA L2 controller is still promising. More effort is

required to allow further customization of the controller to

allow for custom cost functions and error detection and

correction to take place.
XI. References

[1] G. Vacheva, N. Hinov, H. Kanchev, and B. Gilev,

“Application of neural network for smart control of a buck

DC/DC converter,” 2019 42nd International Spring

Seminar on Electronics Technology (ISSE), 2019.

 [2] S. Saadatmand, P. Shamsi, and M. Ferdowsi, “The

voltage regulation of a buck converter using a neural

network predictive controller,” 2020 IEEE Texas Power

and Energy Conference (TPEC), 2020.

[3] B. W. Abegaz and M. Cmiel, “Smart control of Buck

converters using a switching-based clustering algorithm,”

2019 14th Annual Conference System of Systems

Engineering (SoSE), 2019.

[4] K. Cheon, J. Kim, M. Hamadache, and D. Lee, “On

replacing PID controller with Deep Learning Controller for

DC motor system,” Journal of Automation and Control

Engineering, vol. 3, no. 6, pp. 452–456, 2015.

[5] K. Kaheman, J. N. Kutz, and S. L. Brunton, “Sindy-pi:

A robust algorithm for parallel implicit sparse identification

of nonlinear dynamics,” Proceedings of the Royal Society

A: Mathematical, Physical and Engineering Sciences, vol.

476, no. 2242, p. 20200279, 2020.

 Nick Cardamone ELG 4157 Winter 2022

2022 9

[6] “Application of intelligent switching ... -

researchgate.net,” Structure-and-mathematical-modeling-

of-the-node-in-neural-network.png. [Online]. Available:

https://www.researchgate.net/profile/Kyoung-Kwan-

Ahn/publication/242586404_APPLICATION_OF_INTEL

LIGENT_SWITCHING_CONTROL_OF_PNEUMATIC_

ARTIFICIAL_MUSCLE_MANIPULATORS_WITH_MA

GNETO-

RHEOLOGICAL_BRAKE/links/5414fcbf0cf2fa878ad3ed9

8/APPLICATION-OF-INTELLIGENT-SWITCHING-

CONTROL-OF-PNEUMATIC-ARTIFICIAL-MUSCLE-

MANIPULATORS-WITH-MAGNETO-RHEOLOGICAL-

BRAKE.pdf?_sg%5B0%5D=started_experiment_milestone

&origin=journalDetail. [Accessed: 13-Apr-2022].

[7] “2nd place solution in google AI open images object

detection track 2019,” DeepAI, 17-Nov-2019. [Online].

Available: https://deepai.org/publication/2nd-place-

solution-in-google-ai-open-images-object-detection-track-

2019. [Accessed: 12-Apr-2022].

[8] 5. “Comprehensive and comparative analysis of

neural network,” Recurrent-neural-networkRNN-or-Long-

Short-Term-MemoryLSTM-5616.png. [Online]. Available:

https://www.researchgate.net/profile/Vidushi-

Mishra/publication/324883736_COMPREHENSIVE_AND

_COMPARATIVE_ANALYSIS_OF_NEURAL_NETWO

RK/links/5eff046e458515505087a3e7/COMPREHENSIVE

-AND-COMPARATIVE-ANALYSIS-OF-NEURAL-

NETWORK.pdf. [Accessed: 13-Apr-2022].

