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1.   MOTIVATION
Feature Optimization – The ‘Conventional’ Design Approach

◼ Cascade elementary configurations originating from a “design library”

◼ Full-wave computational electromagnetics (CEM) “forward” analysis 

can be used to compute the performance of the assembled circuit.

◼ Used in conjunction with some optimization algorithm to iteratively 

adjust the value of selected geometrical features – the design (optimization) 

variables – to obtain some required electrical performance.

◼ CEM forward analysis is computationally time-consuming, and so  

surrogate models can be trained using full-wave CEM forward modelling, 

are employed to reduce this burden in the design process.

◼ Such feature-optimization based design is the standard and has been a 

widely-used and successful design route.
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e.g. Overall board layout may only permit 

filter’s conducting material inside dashed line.
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e.g.  Desired port locations may not necessarily align 

with those of design library item.

Layout & Other Fabrication Constraints
1.   MOTIVATION
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e.g.  Structure might have undesirable harmonic rejection 
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Starting Shape Pixelated Starting Shape Shaped Structure

◼ Design (Optimization) Variables : Conductor (1) or No Conductor (0) in Individual Pixels

                                                            Binary Optimization Variables.

◼ Need to Use Non-Gradient Based Optimizers (e.g. PSO, GA).

◼ Fine Geometrical Resolution Requires Very Many Pixels 

                                                            Enormous Number of Design Variables.

◼ Convergence Issues with Non-Gradient Optimizers.
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Pixelation-Based Methods (Discrete Case)
2.  EXISTING  SHAPE  SYNTHESIS  METHODOLOGIES



◼ Design (Optimization) Variables : Conductivity Value of Material in 

Individual Pixels

              Continuous Optimization Variables.

   Continuous Range of Conductivity Values.

◼ Can Use Gradient Based Optimizers to Handle the Enormous Number 

of Design Variables Required for Fine Geometrical Resolution.

◼ But Need to Use Techniques to “Nudge” Solution to Near-Binary One 

(And Then Do Final “Binarization” of Pixel Material).

◼ Disadvantages Mentioned by Many Authors When Shaping 

Conducting Material Structures.

◼ Need Computationally Rapid Way to Effectively Find Gradient 

Information. Not Necessarily Available for Complicated Objective 

Functions.

Range of Conductivity Values 

(Undesirable)
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2.  EXISTING  SHAPE  SYNTHESIS  METHODOLOGIES
Pixelation-Based Methods (Continuous Case – “Topology Optimization”)



Fabrication-constrained design possible, as 

with other shape synthesis methods.
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Any subtractive element 

geometries allowed by 

CEM-engine API can of 

course be used.

• Sets [wn, hn, xn, yn] are the optimization variables.

• Could use gradient-based optimizer if gradients available, but non-gradient one 

also practical because fewer variables than with pixel-base approaches.

The Subtractive Method
2.  EXISTING  SHAPE  SYNTHESIS  METHODOLOGIES



◼ Many conventional ‘library’ components, or even 

pixelation-based ones, can be viewed as a continuous 

conducting area from which relatively few pieces have 

been removed (‘subtracted’).

◼ Don’t know size and location of such “subtractive 

objects”, so make these the optimization variables.

◼ Need the geometrical resolution but not as large a 

number of degrees of freedom provided by the required 

pixelation.

◼ Not always trying to find fundamental limits. Just want 

to solve the particular design problem subject to some 

practical constraints.
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The Subtractive Method – Why? 
2.  EXISTING  SHAPE  SYNTHESIS  METHODOLOGIES
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Notch Filter S21

Similar S21, but filter x 

dimension is 25% smaller

The Subtractive Method (Cont’d) 
2.  EXISTING  SHAPE  SYNTHESIS  METHODOLOGIES
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Permissible Region

◼ Subtractive shape synthesis : Begin with permissible region entirely 

occupied by conductor, which is then shaped through adjustment of the size 

and location of selected subtractive geometrical objects.

◼ Proposed additive approach : Begin with permissible region (mostly) devoid 

of conductor and use the size and location of additive elements to populate 

the permissible region with conductor to realize the shaped circuit layout.

◼ Initial set of values for such geometrical parameters must be assigned at the 

commencement of any shape synthesis for it to get started.

◼ When additive elements overlap their union simply results in a more 

complex conductor shape.

◼ If any part of an element extends passed the boundary of the permissible 

region, that part is ignored. 

◼ Fabrication constraints, existing intuition (“informed shaping”), can be 

embedded into the shaping algorithm via the controller script.

Shaping 

Process

3.  PROPOSED  ADDITIVE  SHAPE  SYNTHESIS
The Essential Idea
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◼ Blind shaping: where the only optimizer constraints are based on 

fabrication requirements. Every layout that the optimizer generates is 

simulated

◼ Informed shaping: where every layout that is to be simulated has a good 

chance of giving a favourable cost.

◼ The key difference is informed shaping aims to simulation efficiency    

(i.e. a larger fraction of the total simulations are of “good” layouts”) 

◼ Example: stipulate that certain of the additive elements always be in 

physical contact with the fixed ports/ each other

“Good” Candidate Layout

“Bad” Candidate Layout

3.  PROPOSED  ADDITIVE  SHAPE  SYNTHESIS
“Informed” vs “Blind” Shaping
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◼ Shaping (as in the shaping controller) can be done using an 

external script or inside of the CEM engine using the 

optimization feature

◼ Not all scripting tools interfaces are equal (in terms of quality, 

ease of use and documentation)

◼ Initially AWR and pyAWR were used. Have since moved on 

to HFSS and pyAEDT

◼ The cost landscape is large and complex. Non gradient 

optimizers seem to be more promising (PSO, Simplex, 

Bayesian, GA in particular)

◼ Optimizers are available in Python, Mojo, Julia, and Matlab. 

◼ More then one optimizer can be used during shaping

◼ Initial simulations can be done with lossless materials, and 

courser meshes to speed up simulations

◼ There are many other ways to implement controller script and 

utilize existing optimizers of various kinds

3.  PROPOSED  ADDITIVE  SHAPE  SYNTHESIS
Shaping Considerations
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◼ Cadence AWR was used for simulations

◼ Used particle swarm optimizer (PSO).

◼ Shaping done entirely inside AWR 

using internal optimization 

functionality

◼ Optimization done in multiple steps 

Intermediate Shaping Result

Final Shaped Layout

4.  BANDPASS FILTER EXAMPLE
The Details



Shaped Microstrip 

Filter Layout
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Example Bandpass Filter S21 Example Bandpass Filter S11, S22

4.  BANDPASS FILTER EXAMPLE
Shape & Computed Response of Synthesized Filter
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5.    CONCLUDING REMARKS

◼ An additive approach to the shape synthesis of microstrip circuits has 

been proposed and demonstrated by example. 

◼ Differs from the methods adopted in other work on such shape 

synthesis. 

◼ Contributes to on-going work (by us and others) on the topic of 

shape synthesis. 

◼ Can be relatively easily incorporated with CEM packages that permit 

geometry, and other, control via an API. 

◼ Shape synthesis has been shown by researchers to have many virtues, 

but there are still drawbacks (time to converge, sensitivity to part-to-

part variation) 

◼ Need to get to stage where it becomes convenient in design practice. https://github.com/ncardamone10

cardamonen.ca 

https://github.com/ncardamone10
https://github.com/ncardamone10
cardamonen.ca
cardamonen.ca


6.    BACKUP: MIXED SHAPE SYNTHESIS

❑ Both additive and subtractive 

shapes

❑ multiple shaping layers 

e.g. 4, 6, 8, or 12 layer PCBs

❑ Multiport structures
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6.    BACKUP: OBJECTIVE FUNCTIONS
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M. R. Khan, C. L. Zekios, S. Bhardwaj, and S. V. Georgakopoulos,  

     “Multiobjective fitness functions with nonlinear switching for antenna optimizations,”  

     *IEEE Open Journal of Antennas and Propagation*, vol. 3, pp. 613–626, 2022,  
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